Competitive Academic Agreement Program

Corrosion Under Insulation (CUI): Innovative Solutions to Cold Climate Corrosion Challenges

Dr. Matt Cullin 1/25/2018

Corrosion Under Insulation (CUI)

Moisture ingress makes corrosion possible

Interface of field-applied and shop-applied polyurethane (PU) foam is a weak point

Field-applied insulation

General corrosion rate vs. temperature:

FIGURE 1: Effect of Temperature on Steel Corrosion in Water

Inspection Techniques:

Injectable corrosion inhibitors:

Sodium Bentonite clay

- Cheap
- "Green"
- Readily available
- Swelling characteristics
- Existing research (drilling mud, nuclear casks)

Injector concept:

Longitudinal section view of insulated pipe (not to scale)

Main Objective

To investigate injectable bentonite inhibitors for the mitigation of Corrosion Under Insulation (CUI).

Project Team & Other Sponsors

- Dr. Matthew Cullin (PI)
- 1 Graduate student(M.S.)
- 9 Undergraduate students

Summary

- I. Injection apparatus development
 - A. Identification of carrier liquid
 - B. Injector apparatus design
 - C. Injector prototype and testing
- II. Bentonite corrosion testing
 - A. 1L cell
 - B. Foam crevice cell

I-A: Identification of carrier liquid

Bentonite suspension capacity

Carrier fluid	Suspension concentration (g/mL)	
Propylene glycol	0.07	
Ethanol	Below measurement limit	
Isopropyl alcohol	0.02	
Acetone	Below measurement limit	
Water	0.03	

I-A: Identification of carrier liquid

Chemical compatibility

Carrier fluid	$egin{array}{c} \Delta mass \ \Delta t \end{array} \left(rac{\%}{hr} ight)$	$\frac{\Delta volume}{\Delta t} \left(\frac{\%}{hr} \right)$
Propylene glycol	+ 3.91	- 0.05
Ethanol	+ 4.20	- 0.20
Isopropyl alcohol	+ 3.35	- 0.30
Acetone	+ 8.12	+ 0.77
Water	+ 1.87	- 0.03

I-A: Identification of carrier liquid

Adjusted Vapor Transmission Rate (AVTR)

$$AVTR = \frac{y_f - y_m}{A t}$$

Carrier fluid	$AVTR\left(\frac{mg}{cm^2hr}\right)$
Propylene glycol	Below measurement limit
Ethanol	0.80
Isopropyl alcohol	1.90
Acetone	4.15
Water	0.273

I-B: Injector Apparatus Design

• Design #1

I-B: Injector Apparatus Design

• Design #2

I-C: Injector Prototype and Testing

• Design #2

I-C: Injector Prototype and Testing

• Design #2

I-C: Injector Prototype and Testing

• Design #2

II: Bentonite corrosion testing

Cells: 1L cell and Foam crevice cell

Solutions: Synthetic seawater and foam slurry

Temperatures: 140F, 160F, and 180F

Goals: Determine corrosion rate, inhibitor efficiency, and likelihood of localized corrosion.

II: Bentonite corrosion testing

Measurement techniques

Apparatus

1 Liter Cell Experiments

LPR Measurements Assuming Tafel Constants of 0.1 V

LPR Measurements Assuming Tafel Constants of 0.1 V

II-B: Foam crevice cell

Apparatus

II-B: Foam crevice cell

Foam Crevice Cell Experiments

II-B: Foam crevice cell

Foam Crevice Cell Experiments

Injector Conclusions

- Injection of a liquid at the pipe-insulation interface is possible
- Injection pressures must be carefully controlled to avoid fracturing the foam insulation
- Radial fracture of the foam insulation tested occurred consistently at injection pressures above 60 psi.
- Liquid injection at the pipe-insulation interface required sustained injection pressures. $200\ mL$ of solution required approximately 15-25 minutes to inject fully at the interface. Sustained pressures are easily attained using a dead weight load on a loading arm.
- Injection proceeded even in samples where foam insulation appeared to be tightly adhered to the pipe surface (i.e., no apparent macroscopic flow channel).

Bentonite corrosion testing conclusions

- 50% reduction in corrosion rate observed in bentonite inhibited solutions (synthetic seawater and foam slurry).
- No localized corrosion observed in inhibited solutions.
- Additional work required to make crevice cell conditions sufficiently aggressive.
- Loss of ions and suspended solids from cells apparent. R.O. water replenishment likely inappropriate for future longterm tests.

Future Work

 Refine foam crevice cell operation to obtain a more aggressive environment.

 Perform full scale and/or field tests to confirm bentonite inhibitor performance.

Test other inhibitor formulations.

Project Reporting

 Final Reporting and any student poster papers are available from:

https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=570

THANK YOU!

